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Abstract—The Fleet algorithm is a new meta-heuristic 

swarm intelligence algorithm inspired by the behavior of fleet 
exploring unknown regions, collecting and distributing geo-data 
and deciding on global voyage data acquisition in the Age of 
Discovery. To address the problem of solving the optimal path 
for multi-objective path planning in the exploration of the misty 
aread, this paper proposes and constructs a dynamic path 
planning model for a fleet of ships exploring global route geo-
data. The global optimal path can be effectively planned by 
fitting the algorithm model description with the historical 
archival data for deduction.  

Keywords-fleet algorithm; intelligent evolution; social 
computing; group intelligence 

I. INTRODUCTION 
Currently, social computing research focuses on social 

modelling of individuals and groups, socio-cultural modelling 
and analysis, analysis of social interactions and their laws, 
social data perception and knowledge discovery and decision 
support and applications. In the practice of intelligent 
evolutionary computing with the goal of understanding the 
pattern of social evolution, the vast majority of research relies 
on the analysis of textual data, and less often applies to social 
modelling computational methods, with the problem of 
difficult experimental analysis and evaluation [1]. To address 
the dilemma of experimental analysis of complex social 
systems, Chinese scholars propose the ACP method of 
"artificial society + computational experiment + parallel 
execution" based on the basic model of sociology, which 
adopts a top-down modeling method of intelligences for 
portraying emergent behaviors in social events [2]. The ACP 
approach uses a top-down intelligence modelling approach to 
portray emergent behavior in social events; it exploits the 
designability and repeatability of artificial social 
computational experiments to quantify the evolutionary 
patterns responsible for social events through artificial 
systems involving different experimental scenarios. In the 
practice of intelligent evolutionary computing, which aims to 
understand the laws of social evolution, the complexity of 
human social behavior and its data and the chaotic nature of 
dynamic rules lead to a deep fog in which the vast majority of 
behavior is not visible and obvious. 

It is foreseeable that computational experiments on 
artificial societies will be widely used in various studies on 
social computing in the near future, simulating social 
evolution through computational experiments and providing a 

reference basis for discovering the patterns of social evolution 
and cultural evolutionary characteristics. However, due to the 
complexity of real human social behavior and its data, and the 
chaotic nature of the dynamic rules, social computing research 
is still facing major difficulties: for example, the goal of 
constructing artificial social models is far from the complex 
reality; a large amount of data is hidden in the vast amount of 
canonical texts, which cannot be involved in social modelling 
calculations, etc. 

In response to the above problems, this paper proposes an 
evolutionary model of social knowledge evolution based on 
the ant colony optimization algorithm, taking the example of 
the fleet exploration in the geographic discovery of the age of 
navigation, which provides a coupling idea for the 
participation of textual historical materials in complex social 
computation. The paper firstly compares and introduces the 
characteristics of the geographic discovery in the Age of Sail; 
secondly introduces the improvement objectives and 
principles of the fleet algorithm; then proposes a fleet 
exploration model based on the ant colony algorithm; then 
introduces the application of the fleet exploration model with 
specific cases; and finally summarizes the shortcomings of the 
current research and the expectations for future algorithm 
improvement. 

II. MOTIVATION  
This section provides an introduction to the geographical 

knowledge evolution process of geographical discovery in the 
Age of Discovery, analyses the rationale for the application of 
intelligent computing to the analysis of fleet behavior, and 
presents the application of evolutionary algorithms to this 
problem in the context of the realities of the problem. 

A. The realization of geo-exploratory behaviour in the 
problem of knowledge evolution 

Geopolitical knowledge exploded during the Age of 
Discovery and geographic discoveries. The research addresses 
this phenomenon by developing an evidence-based 
interpretation of behavior. It can be found that the geo-
knowledge generated in early land exploration relied on the 
shifting of road networks, the migration of communities, 
commercial trade and conflict for thousands of years. 
However, that phase has been frozen for a long time under the 
pressure of regional geopolitics. Along with political-military 
behavior, there is even a negative trend in the evolution of 
geo-cognition, data accuracy and total knowledge. 
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Geopolitics has placed constraints on the evolution of 
common global knowledge. 

The urgent need to open up ocean routes and explore new 
continents thus became a consensus among Western nations, 
and at the same time the strongest driving force in the 
evolution of geo-knowledge. In the early days of maritime 
exploration, the tools of navigation were relatively 
rudimentary and the exploratory behavior of fleets was in a 
state of blindness, but the total amount of knowledge grew and 
the precision of the data intensified. Ocean exploration was 
deeply coupled with land reclamation, port construction, trade 
exchanges and military behavior, and with a series of acts such 
as route solidification, data structure solidification and geo-
knowledge exchange, mankind finally completed the basic 
knowledge of global geo-territory. 

The above process depicts the motivation, production, 
sharing, application and evolution of the geo-information of 
the Great Geographic Discovery. By exploring the evolution 
of knowledge in the geographic discoveries, the implied 
development of civilization and the code of human evolution 
can be discovered, which is of great significance for exploring 
the nature of human social evolution. 
 

B. Exploring the Misty Fields 
In the 1990s, M. Dorigo proposed a completely new ant 

colony optimization (ACO) algorithm that simulates the 
behavioral science of nature, with parallel computing and 
robustness. "Any problem in computer science can be solved 
by another layer of indirection", and stochastic ranking 
methods based on the treatment of constraints have been 

proposed, which can reduce the traditional, composite penalty 
function with Lagrange's equation into a simple ordering, 
which has been empirically proven to achieve good practical 
application at the expense of partial mathematical 
convergence. 

After an in-depth investigation of global geo-exploration 
events in the Age of Discovery, this paper chooses to use fleet 
behavior as the basis of the algorithm to develop the following 
analysis: First, in early exploration, fleets lacked the support 
of detailed nautical data and had vague voyage goals. 
However, based on large-scale exploration behavior, the 
frequency of voyages, the total number of ships and the 
direction of exploration are continuously optimized, where the 
optimal fleet can basically achieve the revenue goal (whether 
it is geographical discovery or logbook or economic revenue). 
Secondly, each time the optimal fleet explores a path, it is a 
feasible path from the port to the target. Once the target is 
discovered and marked by the optimal fleet, the other fleets 
quickly follow the same route in groups to reach the 
destination. In this case, the other fleets do not choose the 
feasible paths unconsciously, but there is information transfer 
between the fleets - position data and route data. Thirdly, 
during the voyage the fleet would scientifically record 'geo-
information' to mark its path. In the process of exploring the 
New World, the fleet will generally choose the direction of 
exploration based on the validity and density of this kind of 
geo-information. It is this special way of transmitting 
information that allows the fleet to reduce disorientation and 
ultimately achieve the best possible results in terms of getting 
to where they are. 

Fig. 1. Fleet exploration and convergence of route data
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C. Evolutionary Computation and Genetic Algorithms 
Evolutionary computation implements global probabilistic 

search based on biological evolutionary mechanisms such as 
natural selection and genetic variation to find an approximate 
global optimal solution to a problem without requiring the 
function to be continuous, differentiable and single-peaked. 
This feature guarantees the solvability of evolutionary 
computation and neural network research in solving 
multimodal optimization problems. Today, evolutionary 
computation has emerged as a branch of research in genetic 
algorithms, evolutionary programming, evolutionary 
strategies and genetic programming, and is widely used in NP 
and NPC problem solving, neural network optimization, 
multi-objective optimization problem solving and many other 
fields, and has been deeply involved in the frontiers of 
computer science and artificial intelligence research. 

In 1975, John Henry Holland of the University of 
Michigan proposed "genetic algorithms", drawing on the 
ideas of Darwinian biological evolution and Mendel's laws of 
heredity. It starts with a certain number of initial points, each 
with randomly generated characteristics, and the successfully 
generated nodes are merged into a new 'intelligence'. This 
intelligence has biparental characteristics and meets the 
premise of "adaption", which supports adaptive search of 
computational programs [3]. The use of evolutionary ideas in 
the optimization of computer functions provides a mechanism 
for computers to adapt and learn through "reproduction", 
providing a new pathway for studying the space of evolution 
and natural phenomena. 

In this study, in order to build the basis for a social 
evolution algorithm, a refinement of the Ant cycle concept 
with the possibility of adaptive ACOs was chosen for the 
study. 

In the 1990s, M. Dorigo proposed a new Ant colony 
optimization (ACO) algorithm that simulates the behavioral 
science of nature, with parallel computing and robustness. In 
this study, in order to build the basis for a social evolutionary 
algorithm and to analyze how human thinking and behavior 
form the driving force for exploring the unknown, a modified 
Ant colony algorithm with the concept of Ant cycle and the 
adaptive possibilities of ACO are chosen for the study [4]. 

III. ALGORITHM BUILDING PRINCIPLES AND IMPROVEMENT 
GOALS  

A. Improvement objectives for the ACO base algorithm 
In all social evolutions, intelligences learn based on 

structure when acquiring knowledge. Most deep learning 
models are also first designed with structure and then trained 
with weights. In the process of intelligent learning, however, 
no social behavior or brain-like thinking can be optimally 
solved by relying on one fixed structural model and 
considering only variation in weights. The inherent 
complexity, multi-objective characteristics and variability of 
social behavior all contribute to the practical difficulties of 
placing too much emphasis on algorithmic adaptation. 

Intelligent algorithms can greatly accelerate the avoidance 
accuracy of path exploration and planning in experimental 

data [5], but at the same time the combination of the 
information positive feedback principle and heuristic 
algorithms, which utilize random selection strategies in the 
process of constructing solutions, affects the speed of 
evolution, and the positive feedback principle, which aims to 
reinforce locally optimal solutions, is highly susceptible to 
stagnation [6][7]. An improved model of the ACO algorithm 
is constructed using the behavior of a fleet of ships exploring 
global location targets as inspiration, firstly to analyze the 
limitations of the underlying ACO algorithm and to improve 
it by: 

1) Slow convergence of the algorithm initially: The initial 
values of the geo-edge data in the fleet algorithm are the 
same, and the selection of the next node tends to be 
random. Although random selection explores a larger 
task space and helps to find potentially globally optimal 
solutions, it takes a longer time for the positive feedback 
to take effect, resulting in a slower convergence rate of 
the algorithm initially [8]. 

2) Local optimality: Even with the positive feedback 
feature, since the geoid information is identical in the 
initial space-time and the fleet completes the 
construction of solutions in an almost random manner, 
these solutions are bound to be superior or inferior. As 
the geo-data is continuously updated, the fleet algorithm 
leaves more geo-data on the paths through which the 
better solution passes, and more geo-data in turn attracts 
more fleets to join the exploration, a positive feedback 
process that rapidly widens the initial differences and 
guides the whole system to evolve towards the optimal 
solution [9][10]. Although positive feedback gives the 
algorithm a good convergence rate, if the algorithm 
starts with a suboptimal solution, then positive feedback 
can cause the suboptimal solution to dominate quickly, 
causing the algorithm to fall into a local optimum and 
make it difficult to jump out of the local optimum. 

3) Improving optimization capabilities The ACO base 
algorithm describes the correlation of parameters and 
logical genes, but parameter selection relies more on 
experience and trial and error, and inappropriate initial 
parameters can weaken the algorithm's optimization 
capability. This is why in fleet exploration for path 
planning, taboo tables are set in the algorithm to avoid 
forming circular paths or repeated visits to certain nodes. 
Taboo tables can easily cause "deadlocks", which can 
affect the optimization efficiency of the algorithm. 

4) Resolving the conflict between fleet diversity and speed 
of convergence The diversity of the fleet corresponds 
to the distribution of candidate solutions in the problem 
space. The more uniform the distribution of individuals, 
the better the diversity of the population and the higher 
the probability of obtaining the global optimal solution, 
but the longer the search time; the more concentrated the 
distribution of individuals, the poorer the diversity of the 
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population, which is not conducive to the exploration 
ability of the algorithm [11]. Positive feedback can speed 
up the convergence of the algorithm, but makes the 
algorithm focus on some of the candidate solutions 
earlier, so positive feedback reduces the diversity of the 
population, and is not conducive to improving the 
algorithm's global search ability.  

B. The construction of taboo algorithms in feasible solutions  
The fleet algorithm involves the act of fleet exploration in 

geo-knowledge, not as an isolated, context-free action, but as 
a complex act where there is a specific search direction 
objective, a group cognitive exploration purpose, and a need 
to take into account multi-objective dynamic optimization 
results in a "fog" [12]. 1986, the taboo search algorithm TS 
(Tabu Search) was proposed by Professor Fred Glover of 
Colorado State University, USA, as a search method to jump 
out of the local optimum. 

Taboo search, a sub heuristic stochastic search algorithm, 
can start from an initial feasible solution and select a series of 
specific search directions (moves) as a trial, choosing the 
move that achieves the most change in the value of a particular 
objective function. In order to avoid getting trapped in a local 
optimum, a flexible 'memory' technique is used in TS search 
to record and select the optimization process that has been 
carried out and to guide the next step in the search process 
[13]. Forbidden search is based on domain search by setting 
up a forbidden table to forbid some operations that have 
already been performed, and using a contempt criterion to 
reward some good states, which involves key factors affecting 
the performance of the forbidden search algorithm such as 
neighborhood, forbidden table, forbidden length, candidate 
solutions and contempt criterion. 

In implementing the fleet algorithm to solve for the 
optimal path to explore the misty area, each fleet roams with 
a certain probability. The reason for the roulette algorithm and 
the cumulative probability of the fleet choosing the next port 
is to increase the chances of expanding other routes. In the 
early days of exploration, geo-data was not sufficiently 
accumulated and fleets chose their sailing routes randomly. 
Initially, each sailing route has the same level of geophysical 
knowledge, so the probability of choosing which route to take 
is the same. After a certain amount of geo-data has been 
accumulated, the probability of the next exploration target 
chosen by the fleet is determined by a combination of factors 
such as distance, amount of geo-data and exploration value. 

To minimize the generation of invalid data, fleets are 
assigned a taboo table, which records the current set of points 
travelled by the fleet to avoid repeated exploration of an area. 
For any fleet, the exploration process is bounded by a life 
cycle in which 1) the fleet successfully reaches the departure 
point of another group of fleets, at which point the fleet 
explores a navigable path; 2) the fleet meets another fleet 
during its exploration, and if the locations explored by any two 
fleets do not overlap (except for the meeting point), the paths 
travelled by the two fleets are connected and can constitute the 
exploration of a navigable path; 3) the fleet is unable to find a 
landing area unless it returns along the original route. ) the 

fleet is unable to find a landing area, unless it returns one or 
more journeys along the original route and cannot continue 
exploring, the fleet's act of exploration ends.  

C. Geophysical information and supplementary variables 
The geo-geographical knowledge produced during the 

fleet exploration process, especially the location information, 
i.e. the "fog", is deciphered by the exploration behavior and is 
considered as the "visible" area. Therefore, as time 
accumulates and the number of participating fleets increases, 
the "fog" area is compressed by the fleet exploration. As time 
accumulates and the number of participating fleets increases, 
the "foggy" area is continuously compressed by fleet 
exploration, and the act appears in the form of geo-geographic 
data production, the information data should also exist to 
accelerate the feedback and increase the efficiency of 
dissemination, thus inducing the upgrade of data processing 
arithmetic and knowledge services, which will be fed back to 
the sailing act again [14][15]. 

The goal is to clear the 'fog' of global geo-geography, i.e. 
to build a knowledge evolution of the basics of global 
geographic discovery, such as continental coastlines described 
by global latitude and longitude networks, global shipping 
routes, maritime meteorology, estuarine waterways, distance 
data, etc. Behavioral supplementary rules were constructed in 
the study to add three variables to the fleet model study, the 
global voyage objective, the consolidation objective and the 
risk objective. The differences are as follows: 

 The global route target model requires an updated 
evaluation of the validity of position information on 
all paths after implementing a circular structure of 
position data with global data. 

 Consolidation and risk objectives require local 
information, i.e. the position data on the path needs to 
be updated with the global evolutionary data after a 
vessel has completed a step. The updated position 
data information will only be available when all 
vessels have completed a path cycle of exploration. 
Therefore the position data information on the path 
should be divided into two parts: the position 
information of this exploration that has occurred 
without integration and the position information left 
by all vessels that have passed through the path after 
the current cycle. 

IV. FLEET ALGORITHM 
This section introduces the calculation method of the fleet 

exploration model based on the above algorithm improvement 
objectives and principles. The specific parameters are 
adjusted and explained for the specific characteristics of the 
fleet exploration problem, and the application effect of the 
algorithm is introduced with specific cases. 

A. Fleet system description 
The fleet explores the optimal global route in the raster 

map. The optimal global route is the route that visits all ports 
and has the shortest sailing distance. The raster map is divided 
into land area and navigation area. The land area includes land 
interior points and land edge points. The land interior points 
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are not accessible, and the land edge points can be docking 
points for the fleet. Navigational domain is the area where the 
fleet explores and navigates. 

Fleet behavior is divided into navigation behavior and 
docking behavior. The fleet selects target locations according 
to certain strategies (amount of geo-data, visibility and 
exploration value) and completes visits to all target locations 
in the order of strategies. During the voyage, additional geo-
data volume is generated according to the unit length. A 
strategy to control the distance from land edge points should 
exist during the course of the fleet voyage to ensure that it is 
not too far offshore (to facilitate resupply and improve 
accuracy of geo-data recording) and not too close offshore (to 
ensure navigation efficiency). When the flotilla sails to a 
certain number of times it needs to stop to land for resupply. 
When the number of moves reaches the threshold, the fleet 
will choose the nearest land point to stop for resupply, update 
the number of moves and continue to the target location. If the 
fleet cannot dock to a land edge point even when the 
maximum number of moves is reached, the fleet is destroyed 
and the amount of geo-edge data generated and the amount of 
new docking points are not recorded. The docked land edge 
points are added to the destination surface and added as new 
destinations in the next iteration. Each time the fleet stops at a 
land point or visits a port, the amount of path geopathic data 
is updated. When the entire fleet has finished a voyage, the 
geo-edge data values of each path are updated and new 
destination locations are added for the next iteration. 

 
Table 1.  Fleet System Symbol Description 

Symbols Meaning ( ) Objective function 

A solution to problem 

The probability of the fleet travelling from port i to port j 

Geopathic data intensity of path (i,j) 

Visibility factors in calculating the port visit sequence 

Port attractiveness factors of port visit sequence 

Visibility factors of move between adjacent grids 

Distance between grid i and grid h 

Number of fleet movements 

Number of movements during the fleet's finding supplies threshold Threshold for fleet conversion from exploration to docking visual Fleet visual range 

Number of ships visiting a port in this iteration 

B. Objective function and optimal solution 
The objective function is the sum of the total lengths of all 

paths ( ), = ( , , , ) for an arrangement of ports 
1,2, n, = . 

( ) =  (1)

Let the optimal solution  correspond to the time 
variable , and a solution w corresponds to the time variable 
t. When a solution w is obtained, the optimal 
solution  corresponds to the time variable  and the 
objective function value ( ) is updated as follows. 

= , ( ) < ( ), ( ) ( ) (2)
= , ( ) < ( ), ( ) ( ) (3)

( ) = ( ), ( ) < ( )( ), ( ) ( ) (4)
C. Rasterized Navigation Map 

Assume that the fleet is moving within a two-dimensional 
rasterized world map with a finite number of land obstacles of 
different sizes distributed in the region. A right-angle 
coordinate system is established in the region. The fleet moves 
with a certain step length L. The grid units of the x and y axes 
are L. The fleet moves one grid at a time. The number of grids 
per row is = , and the number of grids per column 
is = . If the land shape is irregular, the land raster 
is added at the boundary, and one or more rasters are used to 
represent the land, and less than one raster is counted as one 
raster. The inner land grid is set as inaccessible forbidden grid, 
and the land edge grid (at least 2 of the neighboring grids are 
feasible) is accessible and can be used for ship docking. 

The relationship between the corresponding coordinates ( , ) of each grid and the sequence number i is expressed 
as = [( 1) ] + 1= int[( 1) ] + 1 (5)

Assume that the fleet can only move between adjacent 
grids each time, and any grid has 8 adjacent grids, i.e., top, 
bottom, left, right, top left, top right, bottom left and bottom 
right. The fleet can move to the center of the grid each time it 
moves. The fleet reaches a target port after several moves and 
visits all the ports to be visited in the path vector one by one, 
finally ending a voyage. 

To solve the path deadlock problem, when grid i's only 
neighbor grid j is reachable, grid i is path deadlocked and it is 
classified as a forbidden grid and considered as an obstacle. 
When raster i is the only reachable neighbor raster of 
forbidden raster j, then raster i is classified as an emergency 
raster and considered as an obstacle. Meanwhile, in order to 
keep the search process away from the space that is least likely 
to produce a better solution and reduce the generation of 
inferior solutions, when raster i has only two reachable 
neighbors j and s, if the angle between the path ( , ) and ( , ) 
is equal to 45°, raster i is classified as a forbidden raster and 
considered as an obstacle. 
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D. Determining the order of port visits 

( ) = ( ) ( ) ( )( ) ( ) ( ) , allowed0,  (6)
Where ( ) is the probability that the fleet travels from 

port i to port j. ( ) denotes the strength of the geo-data 
volume between i and j.  reflects the relative importance of 
the geo-data volume accumulated by the fleet during the 
voyage; ( ) denotes the path visibility (the reciprocal of the 
distance  between i and j,  reflects the relative importance 
of port distance in path selection; ( )  indicates the 
attractiveness of the port (the ratio of the number n of fleets 
visiting the port in the previous generation to the total number 
N of fleets in the last iteration), i.e., the fleet's evaluation of 
the exploration value of going to the port,  reflects the 
exploration value of the sailing destination relative 
importance in path selection. A taboo table is set for fleet 
voyages, which does not allow the fleet to consider ports that 
have already been visited. Construct the path memory vector 
of the route for each fleet. 

( ) = 1  (7)
= +  (8)

( ) =  (9) 

E. Fleet navigation control 
Each fleet movement can only be made between adjacent 

grids, and any grid has 8 adjacent grids, i.e. top, bottom, left, 
right, top left, top right, bottom left and bottom right. The fleet 
can move to the center of the grid each time it moves. After 
several moves, the fleet reaches a current target port and visits 
all the ports to be visited in the path vector one by one, finally 
ending a voyage. If there is an intermediate stop for resupply, 
it departs from the stopping point to the current target port 
after resupply. 

5) The distance between any grid i and the adjacent grid h 
is d_{ih}, where x and y are the grid coordinate 
information. Since the fleet can only move one frame at 
a time, the value of   is 1 or 2. 

� = ( ) + ( )  (10) 

6) The distance between any raster i and the current target 
port j is , where x and y are the raster coordinate 
information. 

= +  (11)
7) The distance between the grid i in which the fleet is 

located and all land points in the visual range centered 
on the fleet itself is ,where x and y are the grid 
coordinate information. = ( ) + ( )  (12)

8) The visibility for moving paths between adjacent grids ( , )  is expressed as  ( ) , where ,  and  
denote the weights of the three distances. Where  is 
added to avoid moving away from the target direction 
and to speed up the convergence of the algorithm;  
is added to control the offshore distance of the vessel 
navigation. 

( ) = 1 1 11 + ( visual) (13) 
9) The fleet is selected to travel to a grid h among adjacent 

optional grids with probability . where ( ) is the 
geo-data volume intensity,  reflects the relative 
importance of the geo-data volume accumulated by the 
fleet during the voyage; ( ) is the visibility of the 
moving path,  reflects the relative importance of 
visibility. ( ) = ( ) ( )( ) ( ) , allowed0,  (14) 

F. Geo-data update 
Geopolitical data updates occur when a fleet of ships calls 

or visits a port after a number of movements. When a fleet 
visits a port, it exchanges with the port some or all of the 
amount of geo-data generated during the previous leg of the 
journey, and this geo-data has an impact on the actions of 
subsequent visiting vessels. 

The amount of geo-data on the path ( , ) route raster after 
a fleet k has docked or visited port j from i is adjusted as: = · +  (15) 

=  (16) 
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=    Fleet  passed through the path ( , ) in one voyage of  steps0  (17) 
where  is the amount of geo-data left on the path after 

the convoy k path ( , );  is the total amount of geo-data 
increase on the path( , ) in this iteration;  is the damage 
factor of geo-data ( = rand[0,1]).  is the amount of geo-
data generated by the fleet after a number of moves through 
the path ( , ) length . 

G. Fleet docking 
When the number of movement  reaches 

threshold, the fleet will choose a straight line to the nearest 
land point within the visual range of the fleet itself. If the land 
point is not reached after berthnum moves, the fleet will be 
considered damaged and will not move forward. = threshold (18)

= rand(0,0.5) (19) 

After the fleet arrives at a land point, if the land point is 
already in the port list, = + 1 and the port attraction is 
enhanced; if the land point is not in the port list, the land point 
is added to the port list and the land point is noted as the port 
point in the next iteration with = + 1. The fleet updates = 0  and = 0 , updates the geo-data 
intensity according to 4.6, and then departs again for the 
current target location. 

H. Steps of fleet algorithm implementation 
According to the above definition and rules, the steps for 

solving the global route path planning problem with the fleet 
algorithm are described as follows. 

1) Initialize the raster navigation map, improve the map 
environment according to rule E, and add the forbidden 
raster. 

2) Initialize each path geo-information intensity  
according to the greedy algorithm, and ( ) =( ) = (0). 

3) Initialize the number of iterations = 0. 
4) Initialize m fleets in p ports, generate random thresholds 

for each fleet at random, initialize each fleet with = 0 and = 0. 
5) Add the initial cities of all fleets to the taboo table 

. 
6) Determine the target port order for the fleet sailing 

according to D. 
7) Move the fleet to the next grid according to E. 
8) If the fleet has completed this voyage, let = + 1, 

update the geo-data strength according to F and execute 
step 9. Otherwise, if the number of fleet movements 
reaches threshold, make a stop for resupply according 
to G. Otherwise, return to execute step 7. 

9) Update , and ( )according to B. 
10) If t is less than the specified number of iterations, return 

to step 4; otherwise, output  and end. 

I.  Case 
Since the 15th century, geographic discoveries have led to 

the emergence of new information on the records of global 
positions acquired in Europe, and people finally broke free 
from the repression of the old frames and sought new answers. 
The great geographic discoveries proved that the earth is 
round and also confirmed the existence of vast oceans on the 
earth, and clarified the basic outline of sea and land, clarified 
the shape, size and form of movement of the earth, collected 
and accumulated a large amount of marine, biological and 
geological information, which caused new thinking in the 
geographic science community and made it possible for 
geography to establish its own theoretical system and develop 
from the previous individual fragmented explanation of 
phenomena to a global scientific theoretical thinking. The 
endless resources distributed globally became reachable, 
accessible, and tradable, stimulating the rapid arrival of the 
industrial revolution, which in turn triggered the evolutionary 
fission of society based on it. As this algorithm originates 
from the continuous human exploration of the sea and geo-
limits in the stage of geographic discovery, the multiple 
heterogeneous data comes from maritime archives, personal 
documents, nautical maps and route data, and the images, 
information and data are effectively integrated into the 
evolutionary logic through the organization and classification 
in the framework of the fleet algorithm. 

The study selects the exploration route paths and logbook 
records of famous seafaring explorers such as Gil-Ean, 
Columbus, Vasco da Gama, Magellan, Cook, etc., combines 
the departure points, ports, islands, landing points, and 
exploration points recorded in the literature at that time to 
build the foundation, completes the foundation alignment 
against the trade ship data recorded by maritime agencies, and 
completes the algorithm test. From the observation of core 
data and the analysis of algorithmic data, it can be found that 
the collection of geo-data has not only brought great changes 
to geographic science, but also can clearly cognize 1) the new 
concept of geo-data and the order of acquisition; 2) the 
effective acquisition and full use of geo-data has given birth 
to the comparative study and inductive method in the era of 
philosophy of science; 3) the unified and standardized 
processing of data has promoted changes in the series of 
subject branches of geography and cartography. 

In particular, it is necessary to point out that the study of 
the optimization of the path of the flotilla to explore the 
unknown territory, its significance is not limited to the 
discussion of historical geoscience, the logic of its occurrence 
and optimization behavior, the evolutionary laws of natural 
and social sciences of all human societies have homologous 
significance behind the impetus to social computing. 

The exploration of the American voyages by Western 
colonists was accompanied by the mapping of the Caribbean. 
The Dutch, as the "coachmen of the sea" in the 17th century, 
also occupied an important place in the history of modern 
maps, especially with the publication of commercial maps. 
The Netherlands had become the center of Europe at that time. 
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Fig. 2. Global colonies and port distribution of Dutch East West India Company 

 
Fig. 3. Christopher Columbus’s voyages to the Americas (1492-1504)
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Cartographers and map publishers in the lowland 
countries, such as Gerardus Mercator, Abraham Ortelius, the 
Hondius family and the Blaeu family, published diverse and 
beautiful maps, atlases and globes. Geographic knowledge 
and trade expansion through the success on commercial maps 
can reflect the real achievements of the fleet's exploration. The 
National Library and National Archives of the Netherlands 
has created the Atlas of Mutual Heritage digital platform, and 
the library of the Macau University of Science and 
Technology has created the Global The National Library of 
the Netherlands and the National Archives have established 
the Atlas of Mutual Heritage digital platform, and the library 
of the Macau University of Science and Technology has 
established the Global Mapping of Macao digital platform, 
which provides a large number of digital images of maps. 

The map images of the above institutions provide the main 
object of study for this paper. This paper chooses to study 
manuscript charts of the Caribbean region drawn by the Dutch 
West India Company in the mid-17th century, typical of 
European collecting institutions: 1. The route maps 
represented by Columbus are selected from various studies; 2. 
The dates and key islands, ports and garrisons are extracted in 
conjunction with literature such as logbook studies; 3. The 
typical geographical coordinates and routes are implemented 
through analysis and comparison of the extracted data The 
data are revised. It can be found that the map-making activity 
supported by the geo-exploration behavior of the fleet has a 
relationship structure that develops in parallel between the 
logbook manuscripts, cartographic standards and printed 
products, each with its own focus. 

Anyone familiar with the maps of American exploration 
made by the Spanish and Portuguese in the 15th and early 16th 
centuries will note that the accuracy of the maps increased 
dramatically with the continued navigation of the fleet: 
whether it was the course of the coastline, the shape of the 
islands, or the relative position of the islands to the mainland 
and between the islands, there was no strong intuitive 
contradiction with modern maps, and therefore it was a strong 
evidence of the fleet's geographic knowledge-gathering 
behavior. The Dutch map improvements Among the 
improvements made by the Dutch, the following two cases are 
particularly notable: when compared with the Dutch East 
India Company (VOC) cartographer's representation of the 
South China Sea, the following features are present: 1) the 
style of the portolan charts is followed. 2) the data is recorded 
with much greater accuracy than the Portuguese maps of the 
16th century. (3) The ship tracks and bathymetric data on 
some of the maps show that the hydrographic surveys were 
completed one after another by the fleet traveling in the 
subsequent routes. 4) The Dutch cartographers generally drew 
shoals on the edges of the islands and the land edges, which 
can prove the depth of ground observation during the fleet's 
multiple stops. smaller, shallower-draft vessels were involved 
to accomplish the task of actively surveying riverbanks.6) 
Reconnaissance of the coastal zone, mapping of the interior, 
and expeditions for the needs of the agricultural colonial 
economy all required military support and deterrence. The 
management of colonial settlers and aborigines required 
religious paralysis and accommodation, and the appearance of 

forts, churches, cemeteries, and plantations in the maps also 
attest to the great advances in geographic knowledge made by 
the Dutch West India Company as it expanded its trade 
network in South America. The development of geographic 
knowledge and trade needs also accompanied the 
development of colonial expansion. 

V.  CONCLUSIONS AND FUTURE WORK  
For how to explore the unknown foggy domain in the 

process of common knowledge evolution, this paper 
constructs a multi-objective dynamic search and achieves 
dynamic optimization and knowledge discovery by a series 
of associated algorithms that apply evolutionary 
computation to an uncertain environment. The main 
achievements of this paper are: i. a fleet algorithm based on 
multi-objective dynamic optimization in the misty domain 
is proposed; ii. an incentive evolution mechanism with 
exploration goals is proposed to build a model by 
constraining fleet exploration rules, dynamic path planning 
combined with behavioral goals of port acquisition data 
and distributed data exchange and sharing; iii. an adaptive 
method is used to update the geo-data carried and 
distributed by the fleet to obtain the global voyage to 
achieve The optimal path for solving the dynamic planning 
of data. 

The algorithm addresses the continuous space-time 
optimization problem by introducing the solution memory 
(port) as the geo-data model and applying the dynamic 
adaptive feedback adjustment strategy to dynamically 
adjust the port attractiveness size to improve the model's 
ability to solve the social computing problem. Focusing on 
the improvement of the initialization method for geo-data 
acquisition, significant improvements in the ability to 
produce global sensing and local event derivation for early 
geo-knowledge production can be achieved, with faster 
convergence, enhanced global search capability, and 
improved solution accuracy.   

The shortcoming is that, while corroborating the 
ecology of early global geo-knowledge production, the 
fleet algorithm still needs to evolve due to the complexity 
of the global geographic discovery with a large multi-
objective scale. Efforts are made to improve robustness and 
evolutionary service to social evolutionary computation by 
adding complexity levels. 
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